A Phenomenology of the Baryon Spectrum from Lattice QCD

Robert Edwards Jefferson Lab

N* 2011

Collaborators: J. Dudek, B. Joo, D. Richards, S. Wallace Auspices of the Hadron Spectrum Collaboration

Baryon Spectrum

"Missing resonance problem"

- What are collective modes?
- What is the structure of the states?

Jefferson Lab

Thomas Jefferson National Accelerator Facility

2

g3>

Lattice QCD

Goal: resolve highly excited states

$$N_{f} = 2 + 1 (u,d + s)$$

Anisotropic lattices:

 $(a_s)^{-1} \sim 1.6 \text{ GeV}, (a_t)^{-1} \sim 5.6 \text{ GeV}$

0810.3588, 0909.0200, 1004.4930

Spectrum from variational method

Two-point correlator

$$C(t) = \left\langle 0 \left| \Phi'(t) \, \Phi(0) \right| 0 \right\rangle$$

$$C(t) = \sum_{\mathbf{n}} e^{-E_{\mathbf{n}}t} \langle 0 | \Phi'(0) | \mathbf{n} \rangle \langle \mathbf{n} | \Phi(0) | 0 \rangle$$

Matrix of correlators

$$C(t) = \begin{bmatrix} \langle 0|\Phi_1(t)\Phi_1(0)|0\rangle & \langle 0|\Phi_1(t)\Phi_2(0)|0\rangle & \dots \\ \langle 0|\Phi_2(t)\Phi_1(0)|0\rangle & \langle 0|\Phi_2(t)\Phi_2(0)|0\rangle & \dots \\ \vdots & & \ddots \end{bmatrix}$$

Diagonalize: eigenvalues \rightarrow spectrum

eigenvectors \rightarrow spectral "overlaps"

Each state optimal combination of Φ_i

$$\Omega_{\mathfrak{n}} = v_1^{\mathfrak{n}} \Phi_1 + v_2^{\mathfrak{n}} \Phi_2 + \dots$$

Benefit: orthogonality for near degenerate states

Thomas Jefferson National Accelerator Facility

 $Z_i^{\mathfrak{n}} \equiv \langle \mathfrak{n} | \Phi_i | 0
angle$

Operator construction

Baryons : permutations of 3 objects

Permutation group S_3 : 3 representations

- Symmetric: 1-dimensional
 e.g., uud+udu+duu
 Antisymmetric: 1-dimensional
 e.g., uud-udu+duu-...
 Mixed: 2-dimensional
 - •e.g., udu duu & 2duu udu uud

Color antisymmetric \rightarrow Require Space [Flavor Spin] symmetric

Classify operators by these permutation symmetries:

• Leads to rich structure

Thomas Jefferson National Accelerator Facility

5

1104.5152

Orbital angular momentum via derivatives

Couple derivatives onto single-site spinors: Enough D's – build any J,M

$$\mathcal{O}^{JM} \leftarrow \left(CGC's\right)_{i,j,k} \left[\vec{D}\right]_i \left[\vec{D}\right]_j \left[\Psi\right]_k$$

Only using symmetries of continuum QCD

 $Operator_{S} \leftarrow Derivatives$ Flavor Dirac

Use all possible operators up to 2 derivatives (transforms like 2 units orbital angular momentum)

1104.5152

Baryon operator basis

🍘 📢

Operators are not states

Two-point correlator

$$C(t) = \langle 0 \big| \Phi'(t) \, \Phi(0) \big| 0 \rangle$$

$$C(t) = \sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}}t} \langle 0 | \Phi'(0) | \mathfrak{n} \rangle \langle \mathfrak{n} | \Phi(0) | 0 \rangle$$

Full basis of operators: many operators can create same state

Spectral "overlaps"

$$\langle \mathfrak{n}; J^P \mid \Phi_i \mid 0 \rangle \ = \ Z_i^{\mathfrak{n}}$$

States may have subset of allowed symmetries

Spin identified Nucleon & Delta spectrum

Thomas Jefferson National Accelerator Facility

Jefferson Lab

9

Spin identified Nucleon & Delta spectrum

Thomas Jefferson National Accelerator Facility

Jefferson Lab

10

Spin identified Nucleon & Delta spectrum

Jefferson Lab

Thomas Jefferson National Accelerator Facility

11

Nucleon J⁻

N=2 J⁺ Nucleon & Delta spectrum

Jefferson Lab

Thomas Jefferson National Accelerator Facility

13

🍘 🏹

Roper??

Thomas Jefferson National Accelerator Facility

Prospects

- Strong effort in excited state spectroscopy
 - New operator & correlator constructions \rightarrow high lying states
- Results for baryon excited state spectrum:
 - No "freezing" of degrees of freedom nor parity doubling
 - Broadly consistent with non-relativistic quark model
 - Add multi-particles \rightarrow baryon spectrum becomes denser
- Short-term plans: resonance determination!
 - Lighter quark masses
 - Extract couplings in multi-channel systems

• The end

N & Δ spectrum: lower pion mass

Jefferson Lab

Spectrum of finite volume field theory

Missing states: "continuum" of multi-particle scattering states

 $\Delta E(L) \leftrightarrow \delta(E)$: Lüscher method

Finite volume scattering

Lüscher method -scattering in a periodic cubic box (length L) -finite volume energy levels $E(L) \rightarrow \delta(E)$

I=1 $\pi\pi$: the " ρ "

Phase Shifts demonstration: I=2 $\pi\pi$

Extract $\delta_0(E)$ at discrete E

No discernible pion mass dependence

1011.6352 (PRD)

isospin=2

 $\pi\pi$

Phase Shifts: demonstration

Form Factors

(Very) Large Q²

Standard requirements:

$$\frac{1}{L} \ll m_{\pi}, m_N, Q \ll \frac{1}{a}$$

Cutoff effects: lattice spacing (a_s)⁻¹ ~ 1.6 GeV

Appeal to renormalization group: Finite-Size scaling

Use short-distance quantity: compute perturbatively and/or parameterize

$$R(Q^2) = rac{F(s^2Q^2)}{F(Q^2)}, \qquad s = 2$$

"Unfold" ratio only at low Q^2 / s^{2N}

 $F(Q^2) = R(Q^2/s^2)R(Q^2/s^4)\cdots R(Q^2)/s^{2N}) \ F(Q^2/s^{2N})$

For $Q^2 = 100 \text{ GeV}^2$ and N=3, $Q^2 / s^{2N} \sim 1.5 \text{ GeV}^2$

Initial applications: factorization in pion-FF

24

D. Renner

Hadronic Decays

